INTRODUCTION TO HORTICULTURAL SCIENCE

SECOND EDITION

45

RICHARD N. ARTECA

INTRODUCTION TO HORTICULTURAL SCIENCE

Second Edition

Introduction to Horticultural Science

Second Edition

Richard N. Arteca

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

This is an electronic version of the print textbook. Due to electronic rights restrictions, some third party content may be suppressed. Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. The publisher reserves the right to remove content from this title at any time if subsequent rights restrictions require it. For valuable information on pricing, previous editions, changes to current editions, and alternate formats, please visit <u>www.cengage.com/highered</u> to search by ISBN#, author, title, or keyword for materials in your areas of interest.

Introduction to Horticultural Science, Second Edition Richard N. Arteca

Senior Vice President, GM Skills & Global Product Management: Dawn Gerrain Associate Product Manager: Nicole Sgueglia Senior Director, Development: Marah Bellegarde Product Development Manager: Juliet Steiner Product Assistant: Scott Royael Marketing Director: Michele McTighe Senior Production Director: Wendy Troeger Production Manager: Mark Bernard Senior Content Project Manager: Stacey Lamodi Senior Art Director: David Arsenault Media Developer: Deborah Bordeaux

Cover image credits: © Elena Elisseeva/ Shutterstock.com

© 2015, 2006 Cengage Learning

WCN: 02-300

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at **www.cengage.com/permissions**. Further permissions questions can be e-mailed to **permissionrequest@cengage.com**

Library of Congress Control Number: 2013948484

ISBN-13: 978-1-111-31279-4

Cengage Learning

200 First Stamford Place, 4th Floor Stamford, CT 06902 USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: **www.cengage.com/global**

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage Learning, visit www.cengage.com

Purchase any of our products at your local college store or at our preferred online store **www.cengagebrain.com**

Notice to the Reader

Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the readers' use of, or reliance upon, this material.

Printed in the United States of America 1 2 3 4 5 6 7 18 17 16 15 14

DEDICATION

To my loving wife, Jeannette, for her dedication to the completion of this book and the countless hours spent preparing figures, editing, organizing, and doing whatever it took to get the job done.

Table of Contents

Preface	XXV
About the Author	xxviii

The Green Plant, What an Organism!1

Abstract
Objectives
Key Terms
Introduction
Why Are Plants So Important? 2
Important Processes in Plants4
Seed Germination 4
Photosynthesis 6
Phototropism 8
Thigmotropism 9
Gravitropism 9
Dormancy 10
Senescence 11
Flowering 12
Abscission 13
Fruit Growth and Development 13
Growth Retardation 14
Weed Control 15
Production of Important Chemicals by Plants 17
Biotechnology 17
Summary19
Review Questions for Chapter 1 19
Activities20
References20

Origin of Agriculture and the Domestication of Plants

Abstract	22
Objectives	
Key Terms	

22

Introduction	23
Theories on the Origin of Agriculture	
Background on the Selection of Edible	
Plants Used Today	
History of Agriculture	28
Egyptian Civilization 28	
Greek Civilization 29	
Roman Civilization 29	
Medieval Horticulture and Agriculture 30	
The Renaissance 31	
The Age of Discovery and the New World 31	
Beginnings of Experimental Science	32
Beginnings of Agricultural Research in the	
United States	
Theories of the Origins of Cultivated Plants	 35
Summary	-
Review Questions for Chapter 2	
Activities	
References	39

The Horticulture Industry: An Important Part of Agriculture and Available

Careers40
Abstract
Objectives
Key Terms
Introduction 41
The Horticulture Industry43
Horticulture—An Area of Agriculture45
Areas of Horticulture46
Ornamental Horticulture 46
Olericulture 49
Pomology 50
Specific Characteristics of Horticulture 50
How to Prepare for a Career in Horticulture
Work Part Time 52
Shadow or Observe Horticulturists 52
Consult School Counselors or Advisors 53
Research the Library and Internet 53
Seek Other Sources of Information 53
Tips for Success in a Horticulture Career54
Considering Personal Interests and Being Realistic 54
Education and Training 54
Suggestions on How to Get a Job56
The Job Application 57
Keeping the Job and Being Successful 58
Career Paths in Horticulture58
Specific Career Areas in Horticulture 59

chapter 3

viii

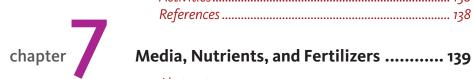
Summary	61
Review Questions for Chapter 3	62
Activities	
References	

The Relationship between Horticulture	
and the Environment65	;

Abstract65
Objectives
Key Terms
Introduction
How to Maintain a Healthy Environment
Potential Problems from Horticultural Practices 68
Effects of Pollution on the Environment 69
Public Demand Puts the Grower in a Difficult
Position 71
Water Resources
Eutrophication74
Pesticides
The Proper Way to Use Pesticides 76
Disposal of Pesticide Waste 76
Recycling Plastic Containers in the Agricultural
Community 77
Wildlife
Wetlands
Summary
Review Questions for Chapter 481
Activities
References
Nejerences

chapter 5 Classifica Plant An

Classification	of Plants	and
----------------	-----------	-----


'lant Anatomy	′	84
---------------	---	----

Abstract
Objectives
Key Terms
Introduction
How Plants Are Classified and Named
Kind of Stem 86
Size of the Plant 87
Stem Growth Form 87
Kind of Fruit 87
Life Cycle 87
Foliage Retention 88
Temperature Tolerances 88
Number of Cotyledons and Venation 88

	Scientific Classification88	3
	Botanical Nomenclature 89	
	Botanical Classification 89	
	Cultivars 90	
	The Plant's Life Cycle)
	Juvenile or Vegetative Phase 90	
	Reproductive or Mature Phase 91	
	Senescence 91	
	The Plant's Vegetative Structures9	1
	Leaves 92	
	Stems 95	
	Roots 97	
	Reproductive Parts of the Plant)
	Flower 100	
	Fruits 101	
	Seeds and Seed Germination107	1
	Seed Germination 101	
	Summary 103	
	Review Questions for Chapter 5	3
	Activities106	
6	References106	5
chapter 💙	Plant Propagation107	,

Abstract	107
Objectives	
Key Terms	
Introduction	
Plant Propagation Methods	
Sexual Propagation 109	-
Asexual Propagation 116	
Methods of Asexual Propagation 117	
Summary	
Review Questions for Chapter 6	
Activities	
Pafarancas	-

Abstract	
Objectives	
Key Terms	
Introduction	140
Plant-Growing Media	141
Roles of Media 141	
Kinds of Media 142	
Soil: Contents, Structure, and Profile	146
Soil Contents 146	
Soil Structure 147	
Soil Profile 148	

Plant Nutrition148
Primary Macronutrients 148
Secondary Macronutrients 149
Micronutrients 150
Factors Affecting pH and the Availability
of Nutrients 151
Soil pH 151
Methods Used to Monitor Nutritional Levels 154
Fertilizers156
Organic Fertilizers 156
Inorganic Fertilizers 157
Fertilizer Formulations 157
Fertilizer Nomenclature 157
Fertilizer Application 158
Timing of Application 159
Improving the Soil Quality
with Organic Matter160
Composting 161
Soil Management in Home Gardens
and Landscape 162
Soil Testing 162
Soil Preparation Prior to Planting 163
Fertilization 163
Summary
Review Questions for Chapter 7
Activities
References 167

Plants and Their Environment168

Abstract	168
Objectives	
Key Terms	
Introduction	168
Plant Environment	170
Atmospheric Environment 170	
Edaphic Environment 175	
Summary	183
Review Questions for Chapter 8	183
Activities	185
Reference	185

Plant Growth Regulators	
Abstract	
Objectives	
Key Terms	
Introduction	

Background of	Plant Growth Regulating	
Substances.		188

The Six Classes of Plant Hormones191
Auxins—History and Physiological Processes 191
Gibberellins—History and Physiological Processes 196
Cytokinins—History and Physiological Processes 198
Abscisic Acid (ABA)—History and Physiological
Processes 200
Ethylene—History and Physiological Processes 200
Brassinosteroids—History and Physiological
Processes 202
Practical Uses of Plant Growth Regulators in
Agriculture204
Plant Growth Retardants 205
Ethylene-Releasing Compounds 206
Ethylene Biosynthesis Inhibitor 207
Compounds Containing Gibberellins 207
Compounds Containing Auxins 208
Compounds Containing Gibberellins and
Cytokinins 208
Compounds Used for Weed Control 209
Summary213
Review Questions for Chapter 9213
Activities216
References

chapter **10** Postharvest Physiology 217

Abstract217
Objectives
Key Terms 217
Introduction217
General Background Information on
Postharvest Handling 219
Biological Factors Involved in the Deterioration of
Harvested Commodities 221
Environmental Factors Involved in the Deterioration of
Harvested Commodities 228
Postharvest Technology Procedures 229
Postharvest Handling for the Home Gardener
and Consumer 235
Selection of Produce 238
Future Outlooks and Trends in Postharvest
Physiology240
Commercial Food Safety Considerations 240
Future Trends in Handling Perishables 241
Summary241
Review Questions for Chapter 10 242
Activities244
References

chapter 11	Pest Management246
	Abstract246
	Objectives
	Key Terms
	Introduction246
	Five Major Categories of Pests
	Insects and Related Pests 249
	Nematodes 254
	Weeds 255
	Diseases 256
	Rodents and Other Animals 260
	Controlling Pests
	Pest Control Procedure 260
	Tips for the Home Gardener: Beneficial
	Organisms for Pest Control267
	Biological Control versus Chemical Control 267
	Beneficial Organisms in the Home Garden 268
	Biological Control in the Home Garden 269
	Summary272
	Review Questions for Chapter 11
	Activities276

Abstract
Objectives
Key Terms
Introduction278
General Background on Biotechnology
and Terminology279
Hydroponics
Tissue Culture
Micropropagation 281
Production of Specialty Chemicals by Plants 282
Use of Single Cells as a Source of Genetic
Variability for Plant Improvement 284
Genetically Engineering Plants
Methods of Transferring Foreign Genes into
Plants 286
Crop Improvements through Genetic Engineering 288
Production of Biopesticides 289
Concerns Resulting from Genetically
Engineering Plants289
Will Genetically Engineered Plants Be
Safe to Eat? 290

	Environmental Concerns and GE Crops 290
	Can Genetically Engineered Plants Become Weeds or
	Transfer Genes to Other Plants to Make Them
	Weeds? 293
	Genetically Engineered Plants' Impact on Agricultural
	Practices 293
	Opposition to Genetically Engineered Foods 296
	Genetically Modified Crops Produced
	in the United States and the World
	Commercially Grown Genetically Engineered Crops
	in the United States 298
	Can We Produce Enough Food to Feed the World
	without Genetically Engineered Crops? 299
	U.S. Regulation of Genetically Modified Food
	and Agricultural Biotechnology Products 300
	Summary
	Review Questions for Chapter 12
	Activities
	References 304
17	
chapter	Site Selection for Horticultural
	Operations

erations 305
Abstract
Objectives
Key Terms
Introduction
Environmental Factors Involving
Site Selection
Temperature 306
Light 307
Rainfall 307
Wind 308
Topography and Drainage 308
Soil Texture and Fertility 309
Water Supply 310
Air Pollution 310
Plant Pests 311
Economic Factors Involving Site Selection
Land Cost and Availability 311
State and Local Regulations 311
Labor 311
Transportation and Accessibility 312
Utilities and Services 314
Competition and Market 314
Site Development
Cultivar Selection
Summary
Review Questions for Chapter 13
Activities
References
,

chapter Greenhouse Structures.

chapter	Greenhouse Structures 319
	Abstract
	Objectives
	Key Terms
	Introduction
	Basic Greenhouse Structure Types
	Structural Parts of a Greenhouse
	Greenhouse Coverings
	Glass Coverings 323
	Plastic Film Coverings 324
	Fiberglass-Reinforced Plastic Coverings 325
	Acrylic and Polycarbonate Coverings 325
	Layout of the Greenhouse Range
	Greenhouse Range Orientation 325
	Bench Orientation in the Greenhouse 325
	Types of Benches 326
	Controlling Greenhouse Temperature
	Heating Systems Commonly Used
	in Greenhouses 329
	Ventilation and Cooling Systems 329
	Summary
	Review Questions for Chapter 14
	Activities
	References
1 Г	,
chapter	Growing Crops in the Greenhouse

Abstrat
Abstract
Objectives
Key Terms
Introduction
Greenhouse Environment 340
Temperature 340
Light 341
Air 342
Humidity 342
Water 342
Selecting Containers for Crops
Types of Containers
Rooting Containers 343
Bedding Plant Containers 344
Green and Flowering Plant Containers 345
Growing Media
Irrigation Practices
Types of Irrigation Systems
Manual Watering 347
Automated Watering Systems 347

Fertilization
Commercially Used Plant Growth Regulating
Compounds in Ornamental Horticulture
Plant Growth Retardants 351
Compounds Containing Auxins 352
Compounds Containing Gibberellins 352
Compounds Containing GA4+7 and Benzyladenine 352
Greenhouse Integrated Pest
Management (IPM)353
Summary354
Review Questions for Chapter 15
Activities
References

chapter 16

Nursery Crops—Development, Facilities, and Production359

359
359
363
370
373

Floral Design 37	7
------------------	---

Abstract	377
Objectives	
Key Terms	377
Introduction	377
History of Floral Design	378
Background on Cut Flowers	381
Permanent Flowers	381
Commonly Used Flowering	
Plants for Cut Flowers	382
Harvesting Flowers	383
Care and Handling of Flowers	
and Foliage after Harvest	383
Principles of Floral Design	384
Elements of Floral Design 385	
Six Key Design Rules 387	

Tools and Materials Used for	
Designing Flowers	
Summary	
Review Questions for Chapter 17	
Activities	

Abs	stract
	ectives
	Terms
	oduction
Bac	kground on Interiorscaping
	ection of Plants Used for the Interiorscape
	Personal Preference 395
	Growing Conditions 395
	Room Design and Furnishings 395
	Plant Characteristics 395
Loc	ation of Plants in the Interiorscape
	Architecture of the Space 398
	Space Available 398
	Height 399
	Color of Walls and Materials 399
Car	ing for Plants in the Interiorscape39
	Bringing Plants to the Site Safely 399
	Acclimation 400
	Plant Environment 400
	Growing Media 403
	Fertilization 403
	Integrated Pest Management (IPM) 404
Pro	duction of Houseplants
b	by the Home Grower40
	Repotting Plants 406
Teri	rarium or Bottle Garden40
	Container Selection 407
	Plant Selection 408
	Necessary Tools 408
	Planting Medium 408
	Care and Maintenance of the Terrarium 409
	nmary4 [.]
0	iew Questions for Chapter 184

Designing Landscapes	
Abstract	
Objectives	
Key Terms	
Introduction	

Background Information on Planning a
Landscape and Key Definitions415
Purposes of Landscaping 416
Types of Landscaping 417
Individuals Responsible for Landscape Design,
Installation, and Maintenance418
Elements of Design 419
Color 419
Texture 420
Form 420
Line 421
Principles of Design 421
Important Factors to Consider when
Preparing a Landscape Plan 422
Creating a Landscape Plan 422
Client Needs and the Purpose of the Landscape 423
Analysis of the Site and Its Use 424
Plant Material Selection 426
Plant Arrangement in the Landscape 428
Sustainable Landscaping
and Water Conservation 428
Designing and Planning a Water-Efficient
Landscape 428
Plant Establishment 430
Care and Maintenance of a Sustainable Landscape 431
Summary 431
Review Questions for Chapter 19 431
Activities

Abstract
Objectives
Key Terms
Introduction
Background Information
on the Planting Plan436
Site Preparation437
Staking the Site 437
Hardscaping 437
Bed Preparation 441
Installation of Plants in the Landscape441
Bedding Plants 441
Trees and Shrubs 442
Ground Covers 444
Summary446
Review Questions for Chapter 20
Activities
References

chapter **22**

Landscape Maintenance	19
Abstract44	49
Objectives44	49
Key Terms	
Introduction44	49
Background of Landscape Maintenance	50
Pruning4	
Pruning Goals 452	
Tree Parts 453	
Pruning Equipment 453	
Pruning Different Types of Plants4	54
Ornamental Trees 455	
Fruit Trees 456	
Grapes 457	
Flowering Shrubs 458	
Evergreen Shrubs 458	
Deciduous Trees 460	
Care of Trees, Shrubs, and Flowering Plants46	50
Watering 460	
Fertilization 461	
Insects and Diseases 461	
Weeds 461	
Turfgrass Care and Maintenance4	63
Summary40	
Review Questions for Chapter 214	
Activities4	65
Warm and Cool Season Turfgrass Selection, Establishment, Care, and Maintenance	56
•	
Abstract	
Key Terms	
4 Introduction	
Turf Quality	
Climatic Requirements 470	,0
Life Cycle 471	
Usage 471 Maintenance Needs 471	
Visual and Functional Quality 471	

Visual and Functional Quality 471 Disease and Insect Resistance 471

Turfgrass Establishment......472

Planting Turfgrass Using Sexual Propagation472Planting Turfgrass Using Asexual Propagation475

Maintaining Turfgrass 476
Proper Management of Nutrients 476
Watering 477
Mowing 478
Removal of Clippings and Thatch 479
Aeration 480
Pest Control 480
Commercially Used Plant Growth Regulating
Compounds in Turf 482
Plant Growth Regulators Used in the Turfgrass
Industry 483
Use of Plant Growth Regulators
as a Turf Grass Management Tool485
Control of <i>Poa annua</i> 486
Improve Shade Tolerance 486
Improve Effectiveness of Overseeding 486
Reduce Water Loss 487
Reduce Mowing Frequency 487
Increase Root Growth 488
Increase the Efficiency of Fertilizer Use 488
Scientific Classification (Nomenclature)
Warm Season Turfgrasses
Cool Season Turfgrasses 489
Summary
Review Questions for Chapter 22
Activities
References 493

Olericulture	
--------------	--

Abstract
Objectives
Key Terms
Introduction
Background Information for Olericulture
Classification of Vegetable Crops 497
Establishing a Vegetable Crop
Selecting a Cultivar 498
Preparing the Seedbed 499
Planting Vegetable Crops 501
Care and Maintenance of Vegetable Crops 501
Proper Management of Nutrients 502
Watering 502
Pest Control 502
Staking and Training 503
Protection from Damaging Temperatures 503
Air Movement 504
Commercially Used Plant Growth Regulating
Compounds in Olericulture
Compounds Containing Ethylene 505

Abstract
Objectives
Key Terms
Introduction
Background Information about Pomology
Types of Fruits
Fruit Crop Establishment
Selecting the Site and the Necessary Facilities 518
Selecting the Cultivars 519
Selecting the Rootstocks 521
Preparing the Land 521
Planting Fruit Crops 521
Maintenance and Care of Fruit Crops522
Manage Nutrients Properly 522
Crop Maturation
Commercially Used Plant Growth Regulators
in Pomology 525
Chemical Thinning of Flowers and Fruits 525
Manipulation of Fruit Ripening 527
Prevention of Fruit Drop 527
Induction of Fruit Abscission 528
Other Plant Growth Regulating Compounds Used in
Pomology 528
Harvesting, Storing, and Marketing530
Summary
Review Questions for Chapter 24531

Activities	
References	

rganic Agriculture533
Abstract533
Objectives
Key Terms
Introduction534
History of Organic Agriculture534
What Is Organic Agriculture?
Organic Production Systems and Regulations
Genetically Modified Organisms (GMO) 537
Organic Agriculture versus
Nonorganic Agriculture 537
Organic Production Practices
Site Selection 538
Seeds and Transplants 538
Land Preparation 538
Soil Fertility 540
Fertilization 541
Crop Rotation for Management of Soil Fertility 542
Irrigation 543
Management of Insect Pests 544
Biological Control 544
Mechanical Control 545
Cultural Control 545
Chemical Control 547
Disease Management 548
Cultural Control 548
Mechanical Control 550
Chemical Control 550
Weed Management
Prevention 551
Cultural Control 551
Biological Diversity 553
Summary
Review Questions for Chapter 25554
Activities
References
/droponics558
Abstract
Objectives
Key Terms

Diffe	rent Types of Hydroponic Systems559 Solution Culture 560
	Substrate or Medium Hydroponic Culture 564
The N	Nutrient Solution
	Water Quality 566
	Reagents Used for Nutrient Solutions 567
	Nutrient Solution Formulations 567
Facto	ors in the Root Zone Affecting
Ну	droponically Grown Plants568
	рН 569
	Temperature 569
	Electrical Conductivity 569
	Oxygenation 570
	ntages and Disadvantages
of	Hydroponic Culture570
	Advantages 570
	Disadvantages 571
Myth	s Associated With Hydroponics571
	Hydroponics Is a New Technology 571
	Hydroponics Is Bad for the Environment
	and Is Unnatural 571
	Hydroponics Is Too High-Tech for the Average Person
	to Understand and Is Very Expensive 572
	Hydroponics Is Only Used for Experimental Purposes
	and by the Hobbyist 572
	Hydroponics Must Be Used Indoors 573
	Growing Plants Hydroponically Does Not Require the
	Use of Pesticides 573
	Hydroponics Produces Huge, Genetically Abnormal
Llave	Super Plants 573
	To Set Up a Simple Hydroponic
De	emonstration System
	Floating Static Solution Culture System 574
Sumr	Nonfloating Static Solution Culture System 574
	nary577 w Questions for Chapter 26577
	ities
	ences
-	
	sary 579
Index	<pre><</pre>

Preface

Presently, no horticultural science texts adequately cover the subject in enough detail for use as a college textbook for a horticultural science class, which is a general science option for students at universities. The main feature that sets this text aside from existing textbooks is its completeness. *Introduction to Horticultural Science* can be used at the college level as a required textbook for an introductory course in horticulture that serves as a general science option. The number of students taking introductory horticultural science courses is growing continually; for example, 400 to 500 students take my Hort 101 course each year, and this number increases each year. This textbook provides an excellent survey of all aspects of horticultural science, including gene jockeying, flower arranging, vegetable production, landscape construction, organic agriculture, hydroponics, and much more. Although this text is designed for college students, it is also useful for high school students preparing for college.

The beginning chapters provide information needed to understand the importance of horticulture in today's world. Chapter 1 discusses the green plant and what an amazing organism it is. This is followed by the origin of agriculture and the domestication of plants in Chapter 2; the horticulture industry and available careers in Chapter 3; and the relationship between horticulture and the environment in Chapter 4. A general understanding of a plant's growth and development, plus the factors that can affect it, is an important part of horticulture and is presented in the next set of chapters. The classification of plants and plant anatomy are covered in Chapter 5. Chapters 6, 7, 8, 9, 10, and 11 cover plant propagation; media, nutrients, and fertilizers; plants and their environment; plant growth regulators; postharvest physiology; and pest management, respectively. Plant biotechnology and genetically modified organisms are covered in Chapter 12. These chapters provide a strong foundation to understand the factors required for a plant to grow. The remaining chapters are applying this knowledge to the specific areas of horticulture. Chapter 13 covers the factors involved in choosing a site for any horticulture operation. Chapters 14 and 15 contain information on greenhouse structures and growing crops in a greenhouse; Chapter 16 discusses nursery development, facilities, and production of nursery crops. Chapters 17 and 18 pertain to floral design and interiorscaping. Designing, installing, and maintaining landscapes are covered in Chapters 19, 20, and 21, respectively. Chapter 22 discusses warm season and cool season turfgrass selection, establishment, care, and maintenance; Chapter 23 covers olericulture (vegetable crops); and Chapter 24 discusses pomology (fruit and nut crops). Chapters 25 and 26 cover organic gardening and hydroponics, two areas of horticulture that have become very popular in recent years.

Each chapter contains a variety of different types of review questions, which will be helpful in digesting the information contained in the chapter. A supplement is also available to instructors with answers to questions in each of the chapters. In addition to questions, activities are given at the end of each chapter so students can explore a given topic in more detail. At the end of most chapters, a list of references is included for further study. In addition, this text is an excellent resource for anyone interested in horticultural science.

NEW TO THE SECOND EDITION

Several additions have been made to the second edition of *Introduction to Horticultural Science*. The first noticeable change is the use of color images. Many new images were also added and tables have been revised. Statistics have been updated. Substantial content changes have been made throughout the book. Although the field of horticulture has been around for thousands of years, it is constantly changing and evolving.

Economic and environmental concerns relating to water and land are impacting the horticulture industry at every level. Information helpful to the home gardener has been added. A section on how to properly dispose of pesticide waste and recycling plastic pesticide containers in the agricultural community has been added to Chapter 4, "The Relationship between Horticulture and the Environment." Chapter 6, "Plant Propagation," now includes a section on practical methods used to initiate germination prior to planting and treatment techniques with auxin to induce rooting in cuttings. Chapter 7, "Media, Nutrients, and Fertilizers," contains information on how to change the pH of soils, organic fertilizers, improving soil quality with organic matter, soil management for home gardens, and composting. Compounds used for weed control in crops and home gardens were added in Chapter 9, "Plant Growth Regulators." Chapter 10, "Postharvest Physiology," has new sections on controlling ethylene in postharvest environments, postharvest handling for the home gardener and consumer, as well as a food safety section for the commercial grower and consumer. Chapter 11, "Pest Management," has been expanded to include the use of beneficial organisms for pest control by the home gardener. Chapter 12, "Plant Biotechnology and Genetically Modified Organisms: An Overview," has expanded the sections concerning the impact of genetically engineered plants on agricultural practices such as environmental concerns, Bt crops, pesticide use, honeybees, and cropping systems.

Updates in the chapters containing the applied information have also been made in this edition. Chapter 13, "Site Selection for Horticultural Operations," covers the economic and environmental factors affecting the selection of a horticulture operation. Chapter 15, "Growing Crops in the Greenhouse," has a new section on commercially used plant growth regulating compounds used in ornamental crops grown in a greenhouse. The production and care of houseplants by the homeowner was added to Chapter 18, "Interiorscaping." Chapter 19, "Designing Landscapes," has a new section on factors to consider when designing and maintaining a water-efficient landscape. Chapter 22, "Warm and Cool Season Turfgrass Selection, Establishment, Care, and Maintenance," now includes a section on the use of plant growth regulators as management tools in turf. New sections were added to Chapter 23, "Olericulture," and Chapter 24, "Pomology: Fruit and Nut Production," on the use of plant growth regulators to produce olericulture and pomology crops to modify the crop's growth and development. Two topics that have increased in popularity in recent years are organic gardening and hydroponics. Chapter 25, "Organic Agriculture," is a new chapter on the topic of organic agriculture covering its history, requirements needed to be classified as "organic," and management practices used to control growth and pests. Chapter 26, "Hydroponics," is also a new chapter and covers the history of hydroponics, nutrient solutions used, different types of hydroponic systems, and how to set up a simple hydroponic system.

ACKNOWLEDGMENTS

A special thank you is extended to all who have contributed to the second edition of *Introduction to Horticultural Science*, including the reviewers and colleagues for providing useful feedback and suggestions, the publishing team at Cengage Learning for their guidance and patience, and finally to my wife Jeannette for the endless hours spent on research and revisions.

Richard N. Arteca, PhD

About the Author

Richard N. Arteca is Professor of Horticultural Physiology in the Department of Plant Sciences at The Pennsylvania State University and has been there for more than 35 years. He received his PhD at Washington State University in 1979 and his MS and BS at Utah State University in 1976 and 1972, respectively. His appointment breakdown at Penn State is research and teaching. Dr. Arteca has published more than 80 publications in refereed journals and is internationally known for his work in biotechnology and genetic engineering. Some examples of his work include leading one of the initial research groups to develop cell culture systems for the production of the antitumor compound taxol, which is commonly used today in chemotherapy against breast cancer and other forms of cancer. Another example of his work is the biological, molecular, and genetic regulatory mechanisms involved in the plant's response to externally applied stimuli. Dr. Arteca's teaching appointment includes three classes: Introductory Horticulture (Hort 101), Plant Growth Regulators (Hort 420), and Advanced Plant Growth Regulators (Hort 520). Introductory Horticulture is a very popular course taught as a resident education course and as a world campus course (which has been taught online for more than a decade).

The Green Plant, What an Organism!

Objectives

After reading this chapter, you should be able to

- list and discuss the many reasons why plants are important.
- discuss the important plant processes and why they are so special.

Key Terms

abscission aesthetic beauty aspirin biotechnology dormancy erosion flowering food source fruit growth and development fuel genetically modified organisms gravitropism growth retardation habitat herbicide negative gravitropism pesticide pharmaceuticals photosynthesis phototropism plant growth regulator positive gravitropism purifying air quiescence rest seed seed germination senescence statolith stress reduction thigmotropism viable weed weed control wetland

INTRODUCTION

This chapter discusses a wide range of reasons plants are so important to our existence. Plants provide us with food, shelter, and pharmaceuticals, while purifying the air we breathe. They are aesthetically beautiful and have been scientifically proven to reduce stress in our daily lives. Plants prevent erosion of the limited amount of topsoil on the Earth's surface, provide habitat and cover for animals, and play a key role in wetland water purification.

Exciting areas of plant research are also covered starting with **seed germination**, which is a very complex process even though it does not appear to be very complicated to the naked eye. Just considering how a tiny seed can rapidly turn into a large tree or how seeds know which way is up and which way is down reveals the complexity. The process of **photosynthesis** is another fascinating area of research, and a better knowledge of how this process works will enable us to provide more food for a hungry world.

ABSTRACT

The green plant is an amazing organism. This chapter presents a number of reasons why plants are important and summarizes the main processes in plants, including seed germination, photosynthesis, phototropism, thigmotropism, dormancy, senescence, flowering, abscission, fruit growth and development, growth retardation, weed control, production of important chemicals by plants, and biotechnology. Plants are able to move in response to environmental cues—such as light (**phototropism**), touch (**thigmotropism**), and gravity (**gravitropism**)—to protect themselves and increase their efficiency. Plants also respond to environmental cues by dropping their leaves through a process called **abscission**, which protects them against winter injury. After shedding its leaves, the plant can temporarily suspend visible signs of plant growth by a process called **dormancy**, which is another exciting area of research. Currently, researchers are trying to unlock the mystery of dormancy so that humans suffering from serious disease might be put into a dormant state pending a future cure. The regulation of **senescence**, or aging, in plants is currently being studied in hopes that if we can understand how to delay aging in plants, this information might be applied to methods for delaying aging in humans.

The process of **flowering** is another rapidly advancing area of research for a variety of reasons. One of the major economic reasons is the consumer demand for flowering plants at specific times of the year, for example, poinsettias for Christmas. By better understanding the flowering process, it will be easier for growers to have crops come in on specific dates. **Fruit growth and development** is studied to produce an adequate supply of high-quality fruits for human consumption. **Plant growth regulator** research receives a considerable amount of attention from scientists throughout the world for a variety of purposes, including reducing plant height and controlling weeds. The production of important plant chemicals for **pharmaceuticals**, fragrances, and a variety of other purposes is a highly competitive area of research because of the potential to make large sums of money. The production of **genetically modified organisms** is also a highly competitive and highly controversial area of plant research because of

Figure 1-1 This tree has grown regardless of adverse conditions, illustrating that plants are amazingly adaptable.

the general public's ethical concerns and legal battles with patenting. Many of the topics discussed in this chapter will be discussed in more detail later in the book.

WHY ARE PLANTS SO IMPORTANT?

For many years, plants have been thought of as immobile creatures because they do not make any obvious movements. Plants are able to adapt to a variety of surroundings because they continually monitor their environmental surroundings and respond rapidly to the wide variety of conditions they are subjected to (Figure 1-1). One way to determine intelligence is by measuring the ability to move in response to a given situation. A growing shoot has been shown to use near-infrared light to determine the closeness of other plants and consequently alter its direction of growth. Also documented is the fact that the stilt palm can, by differential growth of its prop roots, move away from plants that will compete with it. From the other angle, the parasitic weed dodder touches another plant to determine whether it can be exploited. After the dodder plant determines that the plant is susceptible, it engulfs the host and uses all of the host plant's resources. These few examples demonstrate that plants are intelligent. Trewavas (2002) states that traditional definitions of intelligence use movement as a criterion, but the adaptive behaviors shown by individual plants indicate that they are intelligent.

This section summarizes and briefly explains the numerous reasons plants are so important. Plants are important as a **food source**; for true vegetarians, plants are their only source of food. As a food source, plants provide all the essentials to sustain animal life. In addition to being important sources of vitamins, minerals, and fiber, fruits and vegetables when eaten can reduce certain cancer rates and heart disease, respectively, as the American Cancer Society and the American Heart Association report (Figure 1-2). Fruit pectins trap dietary cholesterol, keeping the cholesterol from depositing in the linings of blood vessels and thereby preventing heart attacks. Fruits and vegetables also contain antioxidants that neutralize free radicals involved in aging and some forms of cancer. Plants also provide people a way to establish shelter; lumber from trees is used to build a variety of structures, which protect humans, animals, machinery, and so on from the sometimes harsh external environment. Many special articles of clothing such as dress shirts, pants, and other clothing are made from cotton (Figure 1-3), which is derived from plants.

Figure 1-2 Produce is important in our daily diet.

Plants are also responsible for **purifying**

the air because they remove the carbon dioxide we create and add the oxygen we need, thereby maintaining a balance in the atmosphere. In fact, a large group of people in a small room creates high levels of carbon dioxide that may cause tiredness. Global warming, which is caused by higher levels of carbon dioxide in Earth's atmosphere, has caused concern among today's scientists. This is a controversial topic because the elevated levels of carbon dioxide are thought to be caused by indiscriminately replacing green spaces with buildings, clear cutting forests without proper restoration, and a variety of other factors. Scientists and politicians are now getting together to determine the best way to overcome the problem of global warming before it worsens. Plants are also grown in

an orbiting spacecraft as excellent food sources for astronauts and as air purifiers.

Some plants, such as the common household spider plant, remove pollutants and carbon dioxide from the air in homes and other enclosed spaces (Figure 1-4).

Plants also provide **aesthetic beauty**, such as roses for Valentine's Day and colorful fall leaves (Figure 1-5). You have probably seen futuristic movies where everything is asphalt, and the important green spaces and aesthetic beauty of plants are nonexistent.

Scientific literature also points to plants as significant factors in stress reduction in humans. These studies have shown that people working in an environment that included a variety of different plants

Figure 1-3 Cotton bolls harvested from the parent plant.

Figure 1-4 The spider plant, a commonly grown houseplant, is known to remove pollutants from the air.

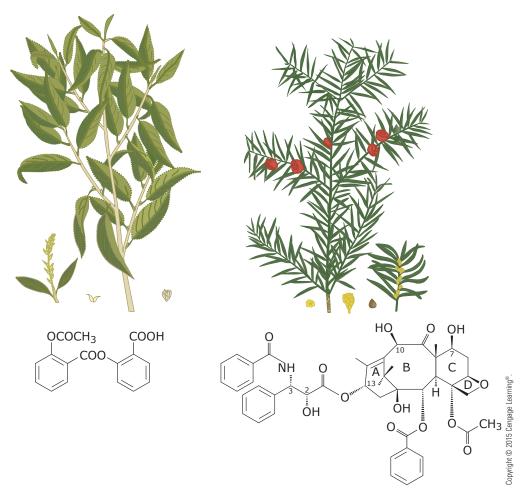
were happier and more productive. In addition to being placed in the immediate workspace, plants in areas where people congregate for breaks, lunch, or other purposes also helped people to cope with the dark days commonly found during winter months and throughout the year. Prior to these scientific studies, many viewed the concept that plants have a profound effect on worker behavior as mythical and without merit. However, with more recent findings, the production and use of indoor plants has become a multimilliondollar industry.

Plants are also an important source of pharmaceuticals. For example, acetylsalicylic acid (**aspirin**) comes from willow trees, taxol from the yew plant (Figure 1-6), and aloe from the aloe plant. There is a variety of other examples that can be given (DiCosmo & Misawa, 1996). Products from plants can serve as **fuel** or as fuel additives, such as ethanol in gasoline.

Plants play an important part in preventing **erosion**, thereby preserving precious topsoil. Today, the availability of high-quality topsoil is limited, and considerable research is underway on ways to prevent erosion. Without topsoil, farmland used to grow crops would be reduced, thereby reducing the food supply. In Pennsylvania, crown vetch along roadways is commonly used to prevent soil erosion (Figure 1-7). Plants provide **habitat** and cover for animals in the wild, protecting them from predators. Plants are an integral part of **wetland** purification of water. Although wetlands were once destroyed as a result of agricultural and urban development, today the federal government protects them. Plants are also used in artificial wetlands to purify wastewater from greenhouses (Figure 1-8). These are only some of the important uses of plants, and you can probably think of many more.

Figure 1-5 Leaves changing colors in the fall (top) and a beautiful yellow rose (bottom) show the aesthetic beauty of plants.

IMPORTANT PROCESSES IN PLANTS


In this section, a variety of selected examples of important processes in plants will be briefly covered; these examples will be discussed in more detail later in the book.

Seed Germination

Seed germination or propagation by seeds is the major method of reproduction in nature and the most widely used method in agriculture because of its high efficiency and ease. A seed has all the genetic information to make a whole plant. A **seed** is defined as a ripened ovule, which consists of an embryo, stored food reserves, and a seed coat or covering (Figure 1-9). When placed in the soil, the seed's special sensors enable it to determine which way is up and which way is down (Figure 1-10). Much research is underway to understand this process so that plants can be grown in outer space without disoriented growth.

Certain criteria must be met for germination to occur:

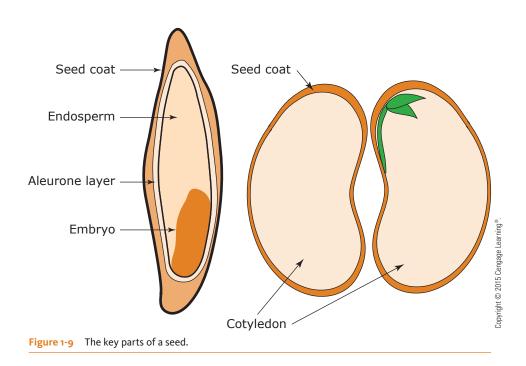
- The seed must be **viable**, which means the embryo is alive and capable of germination.
- The proper environmental conditions must be available, such as water, proper temperature, oxygen, and, in some cases, light.
- Primary dormancy must be overcome. Dormancy acts as a safety mechanism that protects the seed from adverse environmental conditions.

Figure 1-6 The structure of acetylsalicylic acid (aspirin) derived from willow trees is shown on the left, and taxol, an important antitumor compound derived from the yew plant, is shown on the right.

Figure 1-7 Crown vetch is used along a roadside to prevent erosion.

Figure 1-8 This man-made wetland purification system operates in a greenhouse.

After the criteria for seed germination have been satisfied, the seed goes through three stages of seed germination prior to any visible changes in the seed. These stages include:


- 1. imbibition or uptake of water.
- 2. formation of enzyme systems.
- 3. breakdown or metabolism of storage products for energy and as building blocks.

Plant hormones are responsible for inhibiting or promoting seed germination. Gibberellins (GA) typically stimulate germination, whereas abscisic acid (ABA) inhibits seed germination (Arteca, 1996).

While the first three stages are in motion, there are no visible changes in the seed. The first visible sign of seed germination is the emergence of the radicle followed by seedling growth. After the radicle has emerged, the seedling begins to grow and acts as a subterranium organism with no pigmentation exhibiting exaggerated growth until it reaches the soil surface. How does the seed know that it is close enough to the soil surface to germinate and survive? For example, pesty weed seeds do not germinate until they know they are close to the soil surface and that their chances of survival are very good. In addition to gravity sensors, seeds also have light sensors to perceive light so that when they perceive a certain wavelength of light, germination occurs.

Photosynthesis

Photosynthesis refers to a series of chemical reactions in which carbon dioxide and water in the presence of light are converted into carbohydrate (sugar) and oxygen (Figure 1-11). Essential to

6

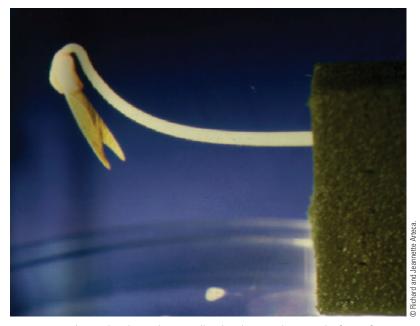
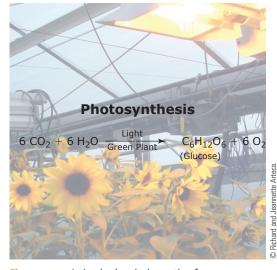


Figure 1-10 This etiolated mungbean seedling bends upward against the force of gravity.


the photosynthetic process is light and chlorophyll, which is a green pigment contained in the chloroplast of plant cells. The purpose of most plant-related research is to explore ways to manipulate growth and increase productivity of plants (Arteca, 1996; Devlin & Witham, 1983). The regulation of photosynthesis and the movement of photosynthetic products from their site of synthesis in the leaf (source) to their sites of accumulation (sink) have a profound effect on the size of the plant and are currently an exciting area of research.

For life as we know it to exist, photosynthesis is essential; however, surprisingly very little research was done in this area until the eighteenth century. One of the main reasons for this lack of research is that the early Greeks believed the plant received its food directly from the Earth, which contained plant and animal debris. They specified that the roots of plants took up everything necessary for plant growth. Early researchers

found that adding more plant and animal materials to the soil increased the size of the plant, thereby supporting the Greek theory, which remained uncontested until much later.

Joanne Baptista Van Helmont in the early 1600s performed a simple yet elegant experiment with willow seedlings. This experiment involved carefully weighing a willow seedling, the tub, and the soil it was planted in, and then growing the plant for five years. At the beginning of the experiment, the seedling weighed 2 kg, and by the end of the five-year period, it had increased to 75 kg. Van Helmont also measured the weight of the soil, which had only lost a few grams in dry weight. Based on these facts, he concluded that water, not soil, was responsible for the growth of the plant. The few grams of soil that were lost were nutrients, which were essential to growth, and water did not contribute appreciably to the overall mass of the willow plant; rather, the process of photosynthesis was responsible for the size increase.

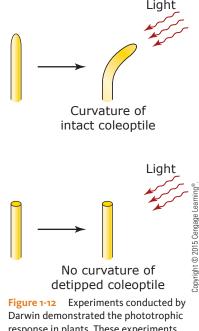
In 1699, John Woodward reevaluated the work of Van Helmont and found that plants required more than water for growth. He worked with mint plants grown on water from different sources, which included rainwater, river water, and Hyde Park drainage water. From this study, Woodward came to the following conclusion:

Figure 1-11 A simple chemical equation for photosynthesis.

7

Vegetables are not formed of water but of a certain peculiar terrestrial matter. It has been shown that there is considerable quantity of this matter contained in rain, spring, and river water; that the greatest part of the fluid mass that ascends up into plants does not settle there but passes through their pores and exhales up into the atmosphere; that a great part of the terrestrial matter, mixed with water, passes up into the plant along with it and that the plant is more or less augmented in proportion as the water contains a greater or less quantity of that matter; from all of which we may reasonably infer, that earth, and not water, is the matter that constitutes vegetables. (Quotation taken from W. Loomis, 1960)

In 1772, Jason Priestly studied the gas exchange that accompanies the process of photosynthesis. His experiment involved placing a mouse in a bell jar with a burning candle. He concluded that the mouse could not live in the air contaminated by the burning candle. However, he did note that if a sprig of mint were placed in the chamber with the burning candle, the air would be purified and the mouse would survive under these conditions. Priestly also observed that the mint plants could survive in the contaminated air caused by the burning candle. Based on his scientific findings, Priestly concluded that:


[P]lants, instead of affecting the air in the same manner with animal respiration, reverse the effects of breathing and tend to keep the atmosphere sweet and wholesome when it has become noxious in consequence of animals either living and breathing or dying and putrefying in it. (Quotation taken from W. Loomis, 1960)

In 1779, Jan Ingenhousz reported that plants could only purify the air in the light. In addition, he stated that only the green parts of the plant produced the purifying agent (oxygen); however, nongreen tissues contaminated the air. Ingenhousz was the first to recognize that chlorophyll and light participated in the photosynthetic process.

In 1842, Julius Robert von Mayer established the law of the conservation of energy. He stated that the energy used by plants came from the sun and that this energy was converted to chemical energy by the process of photosynthesis. In 1905, Frederick Frost Blackman demonstrated that photosynthesis consisted of both a photochemical (light) and biochemical (dark) reaction. In 1937, Robert Hill reported that isolated chloroplasts in the presence of light, water, and a hydrogen acceptor resulted in the evolution of oxygen in the absence of carbon dioxide. The significance of these experiments was that they provided evidence that the evolution of oxygen was a result of photochemical reactions. Today we know that oxygen from photosynthesis comes from water and not from carbon dioxide.

Phototropism

Phototropism is the movement of the plant in response to directional fluxes or gradients in light. Although Darwin is better known for his theory of evolution, he is considered responsible for initiating modern plant hormone research. In The Power of Movement in Plants (Darwin, 1880), he described phototropism and gravitropism for the first time. Darwin used coleoptiles to study phototropism. Coleoptiles are specialized leaves in the form of a hollow cylinder that enclose the epicotyl and are attached to the first node in grasses. The coleoptile protects the growing tip of the grass seedling until the more rapidly growing leaf emerges above the ground. In simple yet elegant experiments, Darwin showed that when coleoptiles were exposed to unidirectional light, there was bending toward the source. If the coleoptile tip was removed, phototropic curvature did not occur, which suggested that the phototropic stimulus is in the tip (Figure 1-12). Today we know that the tip contains auxin, which is responsible for phototropic bending in plants, and that plants bend toward higher light levels to maximize growth and, in some cases, to survive. The Cholodny-Went theory describes how the process of phototropism occurs. This theory states that when higher concentrations

response in plants. These experiments showed that the phototropic stimulus was found in the tip of the coleoptile.

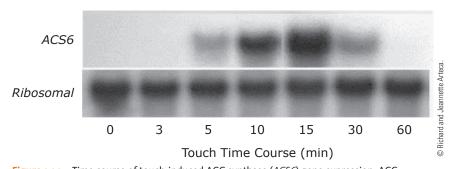
of the plant hormone auxin are on the shaded side than on the light side, the shaded side experiences accelerated growth, which causes bending toward the light.

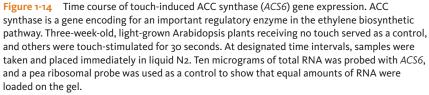
Thigmotropism

Thigmotropism is the movement of a plant in response to touch; examples include the Venus flytrap, sensitive plant, tendrils from the pea, and many others. The inability of plants to move from an adverse external environment has led to the evolution of adaptive mechanisms, which permit them to respond to environmental changes to survive. Plants are exposed to mechanical forces (touch) through wind, vibrations, rain, friction (plant parts rubbing against one another), and others.

Touch stimulation has positive effects, such as:

- shorter and sturdier plants that can withstand certain types of stress (such as wind).
- plants that are more resistant to drought stress, pathogen attack, and more.


Touch stimulation also has negative effects in that it:


- causes an inhibition of leaf expansion.
- decreases photosynthesis.
- promotes leaf yellowing.
- delays flowering, which reduces overall growth and subsequent crop yields (see Figure 1-13).

A number of researchers are studying touch-induced gene expression. They have shown that when a plant is touched for as little as 30 seconds, genes are turned on as rapidly as 5 minutes (Figure 1-14). Research in this area is an attempt to better understand the effects of touch on plant growth. The eventual goal of touch research is genetically engineering plants to reduce plant height, thereby overcoming the need to use chemicals for height reduction, which is a common practice today.

Gravitropism

Gravitropism is the movement of a plant in response to gravity. Research in this area began with Darwin in 1880, and many research groups today are still pursuing it. Studying plant growth and development in response to gravity is important for many reasons, including

Figure 1-13 The Arabidopsis plant on the left received no touch treatment, and the one on the right received a 30-second touch treatment daily for four weeks. Picture was taken when the plants were six weeks old.